Зная окружность найти диаметр калькулятор. Как рассчитать длину окружности, если не указан диаметр и радиус круга

Зная окружность найти диаметр калькулятор. Как рассчитать длину окружности, если не указан диаметр и радиус круга

Часто звучит, как часть плоскости, которая ограничена окружностью. Окружность круга является плоской замкнутой кривой. Все точки, расположенные на кривой, удалены от центра круга на одинаковое расстояние. В круге его длина и периметр одинаковы. Соотношение длины любой окружности и ее диаметра постоянное и обозначается числом π = 3,1415 .

Определение периметра круга

Периметр круга радиуса r равен удвоенному произведению радиуса r на число π(~3.1415)

Формула периметра круга

Периметр круга радиуса \(r\) :

\[ \LARGE{P} = 2 \cdot \pi \cdot r \]

\[ \LARGE{P} = \pi \cdot d \]

\(P \) – периметр (длина окружности).

\(r \) – радиус.

\(d \) – диаметр.

Окружностью будем называть такую геометрическую фигуру, которая будет состоять из всех таких точек, которые находятся на одинаковом расстоянии от какой-либо заданной точки.

Центром окружности будем называть точку, которая задается в рамках определения 1.

Радиусом окружности будем называть расстояние от центра этой окружности до любой ее точки.

В декартовой системе координат \(xOy \) мы также можем ввести уравнение любой окружности. Обозначим центр окружности точкой \(X \) , которая будет иметь координаты \((x_0,y_0) \) . Пусть радиус этой окружности равняется \(τ \) . Возьмем произвольную точку \(Y \) , координаты которой обозначим через \((x,y) \) (рис. 2).

По формуле расстояния между двумя точками в заданной нами системе координат, получим:

\(|XY|=\sqrt{(x-x_0)^2+(y-y_0)^2} \)

С другой стороны, \(|XY| \) - это расстояние от любой точки окружности до выбранного нами центра. То есть, по определению 3, получим, что \(|XY|=τ \) , следовательно

\(\sqrt{(x-x_0)^2+(y-y_0)^2}=τ \)

\((x-x_0)^2+(y-y_0)^2=τ^2 \) (1)

Таким образом, мы и получаем, что уравнение (1) является уравнением окружности в декартовой системе координат.

Длина окружности (периметр круга)

Будем выводить длину произвольной окружности \(C \) с помощью её радиуса, равного \(τ \) .

Будем рассматривать две произвольные окружности. Обозначим их длины через \(C \) и \(C" \) , у которых радиусы равняются \(τ \) и \(τ" \) . Будем вписывать в эти окружности правильные \(n \) -угольники, периметры которых равняются \(ρ \) и \(ρ" \) , длины сторон которых равняются \(α \) и \(α" \) , соответственно. Как мы знаем, сторона вписанного в окружность правильного \(n \) – угольника равняется

\(α=2τsin\frac{180^0}{n} \)

Тогда, будем получать, что

\(ρ=nα=2nτ\frac{sin180^0}{n} \)

\(ρ"=nα"=2nτ"\frac{sin180^0}{n} \)

\(\frac{ρ}{ρ"}=\frac{2nτsin\frac{180^0}{n}}{2nτ"\frac{sin180^0}{n}}=\frac{2τ}{2τ"} \)

Получаем, что отношение \(\frac{ρ}{ρ"}=\frac{2τ}{2τ"} \) будет верным независимо от значения числа сторон вписанных правильных многоугольников. То есть

\(\lim_{n\to\infty}(\frac{ρ}{ρ"})=\frac{2τ}{2τ"} \)

С другой стороны, если бесконечно увеличивать число сторон вписанных правильных многоугольников (то есть \(n→∞ \) ), будем получать равенство:

\(lim_{n\to\infty}(\frac{ρ}{ρ"})=\frac{C}{C"} \)

Из последних двух равенств получим, что

\(\frac{C}{C"}=\frac{2τ}{2τ"} \)

\(\frac{C}{2τ}=\frac{C"}{2τ"} \)

Видим, что отношение длины окружности к его удвоенному радиусу всегда одно и тоже число, независимо от выбора окружности и ее параметров, то есть

\(\frac{C}{2τ}=const \)

Эту постоянную принять называть числом «пи» и обозначать \(π \) . Приближенно, это число будет равняться \(3,14 \) (точного значения этого числа нет, так как оно является иррациональным числом). Таким образом

\(\frac{C}{2τ}=π \)

Окончательно, получим, что длина окружности (периметр круга) определяется формулой

\(C=2πτ \)

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Окружностью называется ряд равноудалённых точек от одной точки, которая, в свою очередь, является центром этой окружности. Окружность имеет также свой радиус, равный расстоянию этих точек от центра.

Отношение длины, какой либо окружности к её диаметру, для всех окружностей одинаково. Это отношение есть число, являющееся математической константой, которое обозначается греческой буквой π .

Определение длины окружности

Произвести расчёт окружности можно по следующей формуле:

L = π D = 2 π r

r - радиус окружности

D - диаметр окружности

L - длина окружности

π - 3.14

Задача:

Вычислить длину окружности , имеющей радиус 10 сантиметров.

Решение:

Формула для вычисления дины окружности имеет вид:

L = π D = 2 π r

где L – длина окружности, π – 3,14 , r – радиус окружности, D – диаметр окружности.

Таким образом, длина окружности, имеющей радиус 10 сантиметров равна:

L = 2 × 3,14 × 10 = 62,8 сантиметра

Окружность представляет собой геометрическую фигуру, являющуюся совокупностью всех точек на плоскости, удаленных от заданной точки, которая называется ее центром, на некоторое расстояние, не равное нулю и именуемое радиусом. Определять ее длину с различной степенью точности ученые умели уже в глубокой древности: историки науки считают, что первая формула для вычисления длины окружности была составлена примерно в 1900 году до нашей эры в древнем Вавилоне.

С такими геометрическими фигурами, как окружности, мы сталкиваемся ежедневно и повсеместно. Именно ее форму имеет внешняя поверхность колес, которыми оснащаются различные транспортные средства. Эта деталь, несмотря на свою внешнюю простоту и незатейливость, считаются одним из величайших изобретений человечества, причем интересно, что аборигены Австралии и американские индейцы вплоть до прихода европейцев совершенно не имели понятия о том, что это такое.

По всей вероятности, самые первые колеса представляли собой отрезки бревен, которые насаживались на ось. Постепенно конструкция колеса совершенствовалась, их конструкция становилась все более и более сложной, а для их изготовления требовалось использовать массу различных инструментов. Сначала появились колеса, состоящие из деревянного обода и спиц, а затем, для того, чтобы уменьшить износ их внешней поверхности, ее стали обивать металлическими полосами. Для того чтобы определить длины этих элементов, и требуется использовать формулу расчета длины окружности (хотя на практике, вероятнее всего, мастера это делали «на глаз» или просто опоясывая колесо полосой и отрезая требуемый ее участок).

Следует заметить, что колесо используется отнюдь не только в транспортных средствах. Например, его форму имеет гончарный круг, а также элементы шестеренок зубчатых передач, широко применяемых в технике. Издавна колеса использовались в конструкциях водяных мельниц (самые древние из известных ученым сооружений такого рода строились в Месопотамии), а также прялок, применявшихся для изготовления нитей из шерсти животных и растительных волокон.

Окружности нередко можно встретить и в строительстве. Их форму имеют достаточно широко распространенные круглые окна, очень характерные для романского архитектурного стиля. Изготовление этих конструкций – дело весьма непростое и требует высокого мастерства, а также наличия специального инструмента. Одной из разновидностей круглых окон являются иллюминаторы, устанавливаемые в морских и воздушных судах.

Таким образом, решать задачу определения длины окружности часто приходится инженерам-конструкторам, разрабатывающим различные машины, механизмы и агрегаты, а также архитекторам и проектировщикам. Поскольку число π , необходимое для этого, является бесконечным, то с абсолютной точностью определить этот параметр не представляется возможным, и поэтому при вычислениях учитывается та ее степень, которая в том или ином конкретном случае является необходимой и достаточной.

Ее диаметр.Для этого только надо применить формулу длины окружности.L = п DЗдесь:L – длина окружности,п – число Пи, равное 3.14,D – диаметр окружности.Переставьте в формуле длины окружности искомое в левую часть и получите:D = L/п

Разберем практическую задачу. Предположим, вам необходимо изготовить крышку на круглый дачный колодец, доступа к которому в данный момент нет. Не , и неподходящие погодные условия. Но у вас есть данные по длине его окружности. Предположим, это 600 см.В указанную формулу подставляем значения:D = 600/3,14 = 191.08 см.Итак, 191 см диаметр вашего .Увеличивайте диаметр до 2-х с учетом припуска за края. Устанавливайте циркуль на радиус 1 м (100 см) и вычерчивайте окружность.

Полезный совет

Окружности сравнительно больших диаметров в домашних условиях удобно вычерчивать циркулем, который быстро можно изготовить. Делается это так. В рейку вбивается два гвоздя на расстоянии друг от друга, равному радиусу окружности. Один гвоздь неглубоко вбейте в заготовку. А другой используйте, вращая рейку, в качестве маркера.

Окружностью называется геометрическая фигура на плоскости, которая состоит из всех точек этой плоскости находящихся на одинаковом расстоянии от заданной точки. Заданная точка при этом называется центром окружности , а расстояние, на котором точки окружности находятся от её центра – радиусом окружности . Область плоскости ограниченная окружностью называется кругом.Существует несколько методов расчёта диаметра окружности , выбор конкретного зависти от имеющихся первоначальных данных.

Инструкция

В простейшем случае, если окружность радиуса R, то её будет равен
D = 2 * R
Если радиус окружности не известен, но известна её , то диаметр можно вычислить по формуле длины окружности
D = L/П, где L – длина окружности , П – П.
Так же диаметр окружности можно рассчитать, зная площадь ею ограниченной
D = 2 * v(S/П), где S – площадь круга, П – число П.

Источники:

  • диаметр круга расчет

В курсе планиметрии средней школы, понятие окружность определяется как геометрическая фигура, состоящая из всех точек плоскости лежащих на расстоянии радиуса от точки, называемой её центром. Внутри окружности можно провести множество отрезков, различным образом соединяющих её точки. В зависимости от построения этих отрезков, окружность можно поделить на несколько частей разными способами.

Инструкция

Наконец, окружность можно поделить построением сегментов. Сегментом часть окружности, составленная из хорды и дуги окружности. Хордой в этом случае является отрезок, соединяющий любые две точки окружности. С помощью сегментов окружность можно поделить на бесконечное множество частей с образованием или без в его центре.

Видео по теме

Обратите внимание

Полученные перечисленными способами фигуры – многоугольники, сегменты и сектора, можно также разделить, использую соответствующие методы, например, диагонали многоугольников или биссектрисы углов.

Кругом называют плоскую геометрическую фигуру, а линию, ее ограничивающую, принято называть окружностью. Основное свойство заключается в том, что каждая точка на этой линии находится на одинаковом расстоянии от центра фигуры. Отрезок с началом в центре круга и окончанием на любой из точек окружности называется радиусом, а отрезок, соединяющий две точки окружности и проходящий через центр - диаметром.

Инструкция

Используйте число Пи для нахождения длины диаметра по известной длине окружности. Эта константа выражает постоянное соотношение между этими двумя параметрами круга - независимо от размеров круга, деление длины его окружности на длину диаметра всегда дает одно и то же число. Из этого вытекает, что для нахождения длины диаметра следует длину окружности разделить на число Пи. Как правило, для практических вычислений длины диаметра достаточно точности до сотых единицы, то есть до двух знаков после запятой, поэтому число Пи можно считать равным 3,14. Но так как эта константа является числом иррациональным, то имеет бесконечное число знаков после запятой. Если возникнет необходимость в более точном определении , то нужное число знаков для пи можно найти, например, по этой ссылке - http://www.math.com/tables/constants/pi.htm .

При известных длинах сторон (a и b) прямоугольника, вписанного в круг, длину диаметра (d) можно вычислить, найдя длину диагонали этого прямоугольника. Поскольку диагональ здесь является гипотенузой в прямоугольном треугольнике, катеты которого образуют стороны известной длины, то по теореме Пифагора длину диагонали, а вместе с ней и длину диаметра описанной окружности, можно рассчитать, найдя из суммы квадратов длин известных сторон: d=√(a² + b²).

Деление на несколько равных частей - часто встречающаяся задача. Так можно построить правильный многоугольник, начертить звезду или подготовить основу для схемы. Есть несколько способов решения этой интересной задачи.

Вам понадобится

  • - окружность с обозначенным центром (если центр не обозначен, вам придется найти его любым способом);
  • - транспортир;
  • - циркуль с грифелем;
  • - карандаш;
  • - линейка.

Инструкция

Самый простой способ разделить окружность на равные части - при помощи транспортира. Разделив 360° на нужное число частей, вы получите угол . Начните с любой точки на окружности - соответствующий ей радиус будет нулевой отметкой. Начиная с него, делайте по транспортиру отметки, соответствующие вычисленному углу.Этот способ рекомендуется, если вам нужно разделить окружность на пять, семь, девять и т.д. частей. Например, для построения правильного пятиугольника его вершины должны располагаться через каждые 360/5 = 72°, то есть на отметках 0°, 72°, 144°, 216°, 288°.

Чтобы разделить окружность на шесть частей, можно воспользоваться свойством правильного - его длиннейшая диагональ равна удвоенной стороне. Правильный шестиугольник как бы составлен из шести равносторонних треугольников.Установите раствор циркуля, равный радиусу окружности, и делайте им засечки, начиная с любой произвольной точки. Засечки образуют правильный шестиугольник, одна из вершин которого будет находиться в этой точке.Соединив вершины через одну, вы построите правильный треугольник, вписанный в окружность , то есть ее на три равные части.

Чтобы разделить окружность на четыре части, начните с произвольного диаметра. Его концы дадут две из необходимых четырех точек. Чтобы найти остальные, установите раствор циркуля, равный окружности. Поставив иглу циркуля на один из концов диаметра, сделайте засечки за пределами окружности и снизу. Повторите то же самое с другим концом диаметра.Проведите вспомогательную линию между точками пересечения засечек. Она даст вам второй диаметр, строго перпендикулярный исходному. Его концы станут остальными двумя вершинами квадрата, вписанного в окружность .

При помощи метода, описанного выше, можно найти середину любого отрезка. Как следствие, этим методом можно удвоить число равных частей, на которые вы окружность . Найдя середину каждой стороны правильного n- , вписанного в окружность , вы можете провести к ним перпендикуляры, найти точку их пересечения с окружность ю и таким образом построить вершины правильного 2n-угольника. Эту процедуру можно повторять угодно раз. Так, квадрат превращается в , тот - в и т.д. Начав с квадрата, вы можете, например, разделить окружность на 256 равных частей.

Обратите внимание

Для деления окружности на равные части обычно применяют делительные головки или делительные столы, позволяющие разделить окружность на равные части с высокой точностью. Когда необходимо разделить окружность на равные части пользуются приведенной ниже таблицей. Для этого нужно умножить диаметр делимой окружности на коэффициент, приведенный в таблице: К х D.

Полезный совет

Деление окружности на три, шесть и двенадцать равных частей. Проводят две перпендикулярные оси, которые пересекая окружность в точках 1,2,3,4 делят ее на четыре равные части; Применяя известный прием деления прямого угла на две равные части при помощи циркуля или угольника строят биссектрисы прямых углов, которые пересекаясь с окружностью в точках 5, 6, 7, и 8 делят каждую четвертую часть окружности пополам.

При проведении построений различных геометрических фигур иногда требуется определить их характеристики: длину, ширину, высоту и так далее. Если речь идет о круге или окружности, то часто приходится определять их диаметр. Диаметр представляет собой отрезок прямой, который соединяет две наиболее удаленных друг от друга точки, расположенные на окружности.

Вам понадобится

  • - измерительная линейка;
  • - циркуль;
  • - калькулятор.

Знаете ли вы, что человек за всю свою жизнь забывает около 40% информации, которую он воспринимал. Из этого следует, что все запомнить, и тем более все знать очень тяжело, а порой даже нереально. К примеру, после того, как ученик закончил школу, а потом институт, допустим, по гуманитарной специальности, а не по технической (строительный или инженерный факультет), можно с большой вероятностью утверждать, что он уже давно забыл элементарную математику.

Вот вы помните, как найти высоту трапеции, как найти производную функции или же правильно построить график? Наверняка, нет. Редко кто сможет осилить такую задачу без дополнительной помощи. Возьмем, например, студента, который плохо изучал геометрию в школе, и просто забыл, как найти периметр круга. Эта статья пригодится тем, кто желает возобновить в памяти школьную программу математики. Зачастую такая необходимость возникает у родителей, к которым дети-школьники обращаются за помощью по домашнему заданию по геометрии, а также ученикам, которые сейчас изучают материал.

Необходимо:

— круг, периметр которого нужно найти;
— школьный циркуль и линейка;
— листок бумаги и карандаш;
— калькулятор.

Инструкция:

  • Найти периметр круга – это аналогичное задание вычислению длины окружности. Для начала потребуется измерять его радиус . Для этого нужно воспользоваться циркулем. Одну его ножку ставим в центр круга, а вторую на любую точку окружности. Поскольку окружность представляет собой совокупность всех равно-отдаленных точек от центра, то куда именно станет вторая ножка циркуля — роли не играет, поскольку везде будет одинаковое расстояние.
  • Если же под рукой нет циркуля, то можно узнать диаметр круга при помощи линейки. Для этого измеряем длину, положив линейку так, чтобы она проходила через центр круга. Расстояние, которое мы получим, будет диаметром . Он равен двум радиусам, поэтому формула, приведенная немного дальше, остается актуальной.
  • Если центр круга не обозначен, то линейкой измеряем самое большое расстояние от одной точки окружности к другой. При таком способе расчета, полученный периметр круга будет числом неточным, так как диаметр мы могли определить не совсем точно. Полученное расстояние измеряем на линейке, приложив к ней циркуль. Результат записываем на листе бумаги. Это и есть радиус нашей окружности.
  • Чтобы узнать периметр круга, нужно воспользоваться формулой . Она очень проста: радиус нашей окружности умножается на два, после чего умножается на число Пи , которое является постоянным и равняется значению 3,14 . Рассчитали его еще древние математики, а последующие поколения успешно применяют в вычислениях уже не одну тысячу лет, поэтому в его правильности можно не сомневаться. После того, как мы проведем расчеты, получим число, которое и является искомым.
  • Для окружностей больших размеров алгоритм и инструкция по измерению остается прежней, вот только линейка и циркуль заменяются строительной рулеткой, и специальными программами для расчетов.

1. Сложнее найти длину окружности через диаметр , по этому сначала разберём этот вариант.

Пример: Найдите длину окружности диаметр которой равен 6 см . Мы используем приведённую выше формулу длины окружности, только сначала нам необходимо найти радиус. Для этого мы делим диаметр 6 см на 2 и получаем радиус окружности 3 см.

После этого всё предельно просто: Умножаем число Пи на 2 и на полученный радиус в 3 см.
2 * 3,14 * 3 см = 6,28 * 3см = 18,84 см.

2. А теперь ещё раз разберём простой вариант найдите длину окружности радиус равен 5 см

Решение: Радиус 5 см умножаем на 2 и умножаем на 3,14. Не пугайтесь, ведь перестановка местами множителей не влияет на результат, и формулу длины окружности можно применять в любой последовательности.

5см * 2 * 3,14 = 10 см * 3,14 = 31.4 см - это найденная длина окружности для радиуса 5 см!

Онлайн калькулятор длины окружности

Наш калькулятор длины окружности произведёт все эти не хитрые вычисления мгновенно и распишет решение в строку и с комментариями. Мы рассчитаем длину окружности для радиуса 3, 5, 6, 8 или 1 см, или диаметр равен 4, 10, 15, 20 дм, нашему калькулятору без разницы для какого значения радиуса найти длину окружности.

Все вычисления будут точными, оттестированными специалистами математиками. Результаты можно использовать в решении школьных задач по геометрии или математике, а также при рабочих расчётах в строительстве или в ремонте и отделке помещений, когда требуются точные вычисления по этой формуле.