Силовые трансформаторы. Виды и устройство. Работа и применение. Что такое трансформатор

Силовые трансформаторы. Виды и устройство. Работа и применение. Что такое трансформатор

Трансформа́тор (от лат. transformo — преобразовывать) — статическое (не имеющее подвижных частей) электромагнитное устройство, предназначенное для преобразования посредством электромагнитной индукции системы переменного тока одного напряжения в систему переменного тока другого напряжения при неизменной частоте и без существенных потерь мощности.

Силовой трансформатор - стационарный прибор с двумя или более обмотками, который посредством электромагнитной индукции преобразует систему переменного напряжения и тока в другую систему напряжения и тока, как правило, различных значений при той же частоте в целях передачи электроэнергии.

история создания

Для создания трансформаторов необходимо было изучение свойств материалов: неметаллических, металлических и магнитных, создания их теории.

Первыми в этом направлении были работы профессора Московского Университета Александра Григорьевича Столетова: он обнаружил петлю гистерезиса и доменную структуру ферромагнетика (80-е)

Братья Гопкинсоны разработали теорию электромагнитных цепей.

В 1831 году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции, лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества.

Схематичное изображение будущего трансформатора впервые появилось в 1831 году в работах Фарадея и Генри. Однако ни тот, ни другой не отмечали в своём приборе такого свойства трансформатора, как изменение напряжений и токов, то есть трансформирование переменного тока.

В 1848 году французкий механик Г. Румкорф изобрёл индукционную катушку. Она явилась прообразом трансформатора.

30 ноября 1876 года, дата получения патента Яблочковым Павлом Николаевичем, считается датой рождения первого трансформатора. Это был трансформатор с разомкнутым сердечником, представлявшим собой стержень, на который наматывались обмотки.

И так:"Днем рождения" трансформаторов считают 30 ноября 1876 года , когда выдающийся русский электротехник и изобретатель Павел Николаевич Яблочков получил французский патент, в котором был описан принцип действия и способ применения трансформатора.Но щитать то, что именно Яблочков единолично разработал силовой трансформатор былобы ошибочно, над этой идеей работало много ученых до и после его патента.

Русский электротехник, создатель техники трехфазного тока М. Доливо-Добровольский в 1890 г. предлагает конструкцию трехфазного трансформатора, который в трехфазной сети позволит заменить три однофазных агрегата. Впоследствии значительную роль в совершенствовании и развитии конструкции трехфазных трансформаторов сыграли англичанин Ферранти, американец Дж. Вестингауз, серб Н. Тесла.

Именно благодаря открытиям и достижениям отечественных ученых в России на рубеже XIX и XX веков была выбрана правильная парадигма - ориентировать дальнейшее развитие электроэнергетики на применение переменного тока высокого напряжения в противовес зарубежным концепциям в пользу постоянного тока и техники низких напряжений.

Началом производства силовых трансформаторов в России можно считать ноябрь 1928 г., когда начал работать Московский трансформаторный завод (впоследствии - Московский электрозавод). Вскоре продукция завода стала удовлетворять потребности страны в высоковольтных трансформаторах. Уже в предвоенный период завод выпускал мощные силовые трансформаторы напряжением до 220 кВ. Первые советские трансформаторы создавались по образцу трансформаторов фирмы Дженерал Электрик (США) и при участии ее консультанта.

После войны были построены новые предприятия и, прежде всего, Запорожский трансформаторный завод, Тольяттинский электротехнический завод и др. Вскоре эти два завода приняли на себя основную нагрузку по производству высоковольтных силовых трансформаторов для энергетики. Московский электрозавод стал все больше специализироваться на изготовлении силовых трансформаторов для электрических печей, шунтирующих реакторов всех классов напряжения, измерительных трансформаторов напряжения, регулировочных трансформаторов и др.

Изготовление силовых трансформаторов предельных мощностей постепенно сосредотачивалось на Запорожском трансформаторном заводе, а выпуск значительного количества трансформаторов небольшой мощности (до напряжения 20 кВ) - на Минском электротехническом заводе, построенном в конце 50-х годов.

После распада СССР значительное количество трансформаторных мощностей оказалось за пределами России.

Отечественным трансформаторным заводам - ОА ОХК "Электрозавод" (г. Москва), ОАО "Трансформатор" (г. Тольятти), ОАО "Уралэлектротяжмаш" (г. Екатеринбург), ОАО Биробиджанский завод силовых трансформаторов - в новых условиях пришлось внести существенные коррективы в выпускаемую номенклатуру и сбытовую политику, чтобы противостоять в конкурентной борьбе своим недавним партнерам из стран ближнего зарубежья и мощным фирмам Европы и США.

Прогресс трансформаторостроения в ХХ веке как у нас в стране, так и за рубежом в основном характеризовался следующими направлениями:
а) обеспечение повышения предельных параметров трансформаторов в связи с ростом мощности энергосистем и энергоблоков;
б) снижение размеров, массы и потерь энергии в каждом трансформаторе определенной мощности и класса напряжения.

Прогресс в технико-экономических показателях трансоформаторов в первую очередь обусловлен улучшением качества активных и изоляционных материалов, а также конструктивными достижениями, реализуемыми через так называемую параметрическую и структурную оптимизацию. Первая позволяет находить наилучшие значения параметров, вторая - наиболее рациональные конструктивные схемы взаимного расположения деталей и узлов трансформатора.

Как известно, материалы, используемые при производстве трансформаторов, подразделяются на активные, изоляционные и конструкционные . В качестве активных материалов применяются:
-электротехническая сталь - для изготовления магнитопровода;
-медь - для изготовления обмоток.

Одним из основных активных материалов трансформатора является тонколистовая электротехническая сталь. В течение многих лет для магнитных систем трансформаторов применялась листовая сталь горячей прокатки с толщиной листов 0,5 или 0,35 мм. Качество этой стали постепенно улучшалось, однако удельные потери в ней были высоки.

Появление в конце 40-х годов холоднокатаной текстурованной стали, т.е. стали с определенной ориентировкой зерен (кристаллов), имеющей значительно меньшие удельные потери и более высокую магнитную проницаемость, позволило увеличить индукцию в магнитной системе и существенно уменьшить массу активных материалов при одновременном уменьшении потерь энергии в трансформаторе. Вместе с этим было получено уменьшение расхода остальных материалов - изоляционных, конструкционных, масла и т.д.

Применение холоднокатаной стали позволило также уменьшить внешние габариты и увеличить мощность трансформатора в одной единице, что особенно важно для трансформаторов большой мощности, внешние размеры которых ограничиваются условиями перевозки по железным дорогам.

Одной из существенных особенностей холоднокатаной стали является анизотропия ее магнитных свойств, т.е. различие этих свойств в различных направлениях внутри листа или пластины стали. Наилучшие магнитные свойства (наименьшие удельные потери и наибольшую магнитную проницаемость) эта сталь имеет в направлении прокатки.

Конструкция магнитной системы трансформатора с учетом анизотропии магнитных свойств холоднокатаной стали должна быть выполнена так, чтобы во всех ее частях - стержнях и ярмах - вектор индукции магнитного поля имел направление, совпадающее с направлением прокатки стали.

Существенно улучшить параметры трансформаторов можно посредством перехода на так называемые аморфные стали. Однако технологии подобного перехода пока не отработаны. Отдельные изготовленные за рубежом образцы с магнитопроводами из аморфной стали слишком дороги, что не позволяет пока говорить о ее массовом использовании при производстве трансформаторов.

Другой активный материал трансформатора - металл обмоток - в течение долгого времени не подвергался изменению. Низкое удельное электрическое сопротивление, легкость обработки (намотки, пайки), удовлетворительная стойкость по отношению к коррозии и достаточная механическая прочность электролитической меди сделали ее единственным материалом для обмоток трансформаторов в течение ряда десятилетий. Несмотря на это, относительно малое мировое распространение природных запасов медных руд заставило искать пути замены меди другим металлом, и в первую очередь, алюминием, более широко распространенным в природе.

При переходе на алюминиевые обмотки был решен ряд задач технологического характера, связанных с технологией намотки алюминиевых обмоток, пайкой и сваркой алюминия. В настоящее время все новые серии трансформаторов общего назначения мощностью до 16 000 кВ.А включительно проектируются с алюминиевыми обмотками.

Открытие в 80-х годах проводниковых материалов, обладающих свойством высокотемпературной сверхпроводимости, открыло новые перспективы создания трансформаторов меньших габаритов со сниженными потерями. Удалось преодолеть главное препятствие использования сверхпроводимости: громоздкие криогенные системы для получения жидкого гелия были заменены простыми установками жидкого азота при атмосферном давлении. Именно это направление совершенствования конструкции трансформаторов может рассматриваться в качестве одного из наиболее перспективных.

Применение в электросетях

Поскольку потери на нагревание провода пропорциональны квадрату тока, проходящего через провод, при передаче электроэнергии на большое расстояние выгодно использовать очень большие напряжения и небольшие токи. Из соображений безопасности и для уменьшения массы изоляции в быту желательно использовать не столь большие напряжения. Поэтому для наиболее выгодной транспортировки электроэнергии в электросети многократно применяют трансформаторы: сначала для повышения напряжения генераторов на электростанциях перед транспортировкой электроэнергии, а затем для понижения напряжения линии электропередач до приемлемого для потребителей уровня.

конструкция

Самый простой по конструктивному выполнению трансформатор состоит из магнитопровода (магнитная система) и обмоток трансформатора.

Магнитная система
Магнитная система (магнитопровод) трансформатора — комплект элементов (чаще всего пластин) электротехнической стали или другого ферромагнитного материала, собранных в определённой геометрической форме, предназначенный для локализации в нём основного магнитного поля трансформатора. Магнитная система в полностью собранном виде совместно со всеми узлами и деталями, служащими для скрепления отдельных частей в единую конструкцию, называется остовом трансформатора.

Часть магнитной системы, на которой располагаются основные обмотки трансформатора, называется - стержень

Часть магнитной системы трансформатора, не несущая основных обмоток и служащая для замыкания магнитной цепи, называется - ярмо

В зависимости от пространственного расположения стержней, выделяют:
Плоская магнитная система - магнитная система, в которой продольные оси всех стержней и ярм расположены в одной плоскости
Пространственная магнитная система - магнитная система, в которой продольные оси стержней или ярм, или стержней и ярм расположены в разных плоскостях
Симметричная магнитная система - магнитная система, в которой все стержни имеют одинаковую форму, конструкцию и размеры, а взаимное расположение любого стержня по отношению ко всем ярмам одинаково для всех стержней
Несимметричная магнитная система - магнитная система, в которой отдельные стержни могут отличаться от других стержней по форме, конструкции или размерам или взаимное расположение какого-либо стержня по отношению к другим стержням или ярмам может отличаться от расположения любого другого стержня

Обмотки

Основным элементом обмотки является виток — электрический проводник, или ряд параллельно соединённых таких проводников (многопроволочная жила), однократно обхватывающий часть магнитной системы трансформатора, электрический ток которого совместно с токами других таких проводников и других частей трансформатора создаёт магнитное поле трансформатора и в котором под действием этого магнитного поля наводится электродвижущая сила.

Обмотка — совокупность витков, образующих электрическую цепь, в которой суммируются ЭДС, наведённые в витках. В трёхфазном трансформаторе под обмоткой обычно подразумевают совокупность обмоток одного напряжения трёх фаз, соединяемых между собой.

Проводник обмотки в силовых трансформаторах обычно имеет квадратную форму для наиболее эффективного использования имеющегося пространства (для увеличения коэффициента заполнения в окне сердечника). При увеличении площади проводника проводник может быть разделён на два и более параллельных проводящих элементов с целью снижения потерь на вихревые токи в обмотке и облегчения функционирования обмотки. Проводящий элемент квадратной формы называется жилой.

Транспонированный кабель применяемый в обмотке трансформатора

Каждая жила изолируется при помощи либо бумажной обмотки, либо эмалевого лака. Две отдельно изолированных и параллельно соединённых жилы иногда могут иметь общую бумажную изоляцию. Две таких изолированных жилы в общей бумажной изоляции называются кабелем.

Особым видом проводника обмотки является непрерывно транспонированный кабель. Этот кабель состоит из жил, изолированных при помощи двух слоёв эмалевого лака, расположенных в осевом положении друг к другу, как показано на рисунке. Непрерывно транспонированный кабель получается путём перемещения внешней жилы одного слоя к следующему слою с постоянным шагом и применения общей внешней изоляции.

Бумажная обмотка кабеля выполнена из тонких (несколько десятков микрометров) бумажных полос шириной несколько сантиметров, намотанных вокруг жилы. Бумага заворачивается в несколько слоёв для получения требуемой общей толщины.

Дисковая обмотка

Обмотки разделяют по:
Назначению
Основные — обмотки трансформатора, к которым подводится энергия преобразуемого или от которых отводится энергия преобразованного переменного тока.
Регулирующие - при невысоком токе обмотки и не слишком широком диапазоне регулирования, в обмотке могут быть предусмотрены отводы для регулирования коэффициента трансформации напряжения.
Вспомогательные — обмотки, предназначенные, например, для питания сети собственных нужд с мощностью существенно меньшей, чем номинальная мощность трансформатора, для компенсации третей гармонической магнитного поля, подмагничивания магнитной системы постоянным током, и т. п.
Исполнению
Рядовая обмотка - витки обмотки располагаются в осевом направлении во всей длине обмотки. Последующие витки наматываются плотно друг к другу, не оставляя промежуточного пространства.
Винтовая обмотка - винтовая обмотка может представлять собой вариант многослойной обмотки с расстояниями между каждым витком или заходом обмотки.
Дисковая обмотка - дисковая обмотка состоит из ряда дисков, соединённых последовательно. В каждом диске витки наматываются в радиальном направлении в виде спирали по направлению внутрь и наружу на соседних дисках.
Фольговая обмотка - фольговые обмотки выполняются из широкого медного или алюминиевого листа толщиной от десятых долей миллиметра до нескольких миллиметров.

Другие элементы трансформатора не принимают непосредственного действия в преобразовании электроэнергии, но без них работа трансформатора может быть хужэ, или дажэ невозможна.

Клеммы

Клеммы в сухих трансформаторах могут быть выведены на клеммную колодку в виде болтовых контактов или соединителей с плоскими контактами. Клеммы могут размещаться внутри корпуса. В герметичных масляных или жидкостных трансформаторах обеспечивается перемещение электрических соединений с внутренней стороны бака наружу:
Проходные изоляторы - клеммный блок в форме проходного изолятора переносит соединения из внутренней изоляционной среды трансформатора во внешнюю изоляционную среду, бывают:
Низковольтные проходные изоляторы
Конденсаторные проходные изоляторы
Сильноточные проходные изоляторы
Кабельные соединения
Соединения с элегазовыми устройствами SF6

Охладители

Охлаждающее оборудование забирает горячее масло в верхней части бака и возвращает охлажденное масло в нижнюю боковую часть. Холодильный агрегат имеет вид двух масляных контуров с непрямым взаимодействием, один внутренний и один внешний контур. Внутренний контур переносит энергию от нагревающих поверхностей к маслу. Во внешнем контуре масло переносит тепло к вторичной охлаждающей среде. Трансформаторы обычно охлаждаются атмосферным воздухом.

Виды охладителей:
Радиаторы, бывают разных типов. В основном они представляют собой множество плоских каналов в пластинах с торцевым сварным швом, которые соединяют верхний и нижний коллекторы.
Гофрированный бак является одновременно и баком и охлаждающей поверхностью для распределительных трансформаторов малой и средней мощности. Такой бак имеет крышку, гофрированные стенки бака и нижнюю коробку.
Вентиляторы. Для больших узлов возможно использование подвесных вентиляторов под радиаторами или сбоку от них для обеспечения принудительного движения воздуха и естественного масляного и принудительного воздушного (ONAF) охлаждения. Это может увеличить нагрузочную способность трансформаторов примерно на 25%.
Теплообменники с принудительной циркуляцией масла, воздуха. В больших трансформаторах отведение тепла при помощи естественной циркуляции через радиаторы требует много места. Потребность в пространстве для компактных охладителей намного ниже, чем для простых радиаторных батарей. С точки зрения экономии места может оказаться выгодным использовать компактные охладители со значительным аэродинамическим сопротивлением, что требует применения принудительной циркуляции масла с помощью насоса и мощных вентиляторов для нагнетания воздуха.
Масляно-водяные охладители, как правило, представляют собой цилиндрические трубчатые теплообменники со съёмными трубками. Такие теплообменники очень распространены и представляют собой классическую технологию. Они имеют разнообразное применение в промышленности. Более современные конструкции, например, плоские теплообменники мембранного типа, еще не вошли в практику.
Масляные насосы. Циркуляционные насосы для масляного охлаждающего оборудования - это специальные компактные, полностью герметичные конструкции. Двигатель погружён в трансформаторное масло; сальниковые коробки отсутствуют.


Оборудование для стабилизации напряжения

Большинство трансформаторов оборудовано некоторыми приспособлениями для настройки коэффициента трансформации путём добавления или отключения числа витков.

Настройка может производиться с помощью переключателя числа витков трансформатора под нагрузкой либо путем выбора положения болтового соединения при обесточенном и заземлённом трансформаторе.

Бывают:
Переключатели числа витков без нагрузки
Переключатели числа витков под нагрузкой

Навесное оборудование

Газовое реле

Газовое реле обычно находится в соединительной трубке между баком и расширительным баком. Газовое реле выполняет две функции:
накапливает свободные пузырьки газа, которые движутся в направлении расширительного бака из бака трансформатора;
функцию датчика, когда поток масла между баком и расширительным баком превышает заданную величину.

Индикация температуры

Термометры обычно устанавливают для измерения температуры масла в верхнем слое и для индикации точек опасного перегрева в обмотке.

Встроенные трансформаторы тока

Трансформаторы тока могут располагаться внутри трансформатора, часто вблизи заземленного рукава на стороне масла проходных изоляторов, а также на низковольтных шинах. В данном вопросе роль играют цена, компактность и безопасность. При таком решении отпадает необходимость иметь несколько отдельных трансформаторов тока на сортировочной станции с внешней и внутренней изоляцией, рассчитанной на высокое напряжение.

Поглотители влаги

Необходимо удалить влагу из воздушного пространства над уровнем масла в расширительном баке, чтобы обеспечить отсутствие воды в масле трансформатора.

Системы защиты масла

Самой обычной системой защиты масла является открытый расширительный бак, в котором воздух над уровнем масла вентилируется через влагопоглотительное устройство.

Расширительный бак трансформатора может быть снабжён надувной подушкой. Надувная подушка из синтетического каучука располагается над маслом. Внутренне пространство подушки соединено с атмосферой, поэтому она может вдыхать воздух, когда трансформатор охлаждается и объем масла сжимается, и выдыхать воздух, когда трансформатор нагревается.

Другим решением является расширительный бак, который разделён в горизонтальной плоскости мембраной или диафрагмой, которая позволяет маслу расширяться или сжиматься без прямого контакта с наружным воздухом.

Пространство над маслом в расширительном баке можно заполнить азотом. Это можно делать из баллона со сжатым газом через редукторный клапан. Когда трансформатор вдыхает, редукторный клапан выпускает азот из баллона. Когда объём увеличивается, азот уходит в атмосферу через вентиляционный клапан.

Для того, чтобы сэкономить потребление азота, можно задать некий шаг давления между наполнением азотом и выпусканием азота.

Трансформаторы могут иметь герметическое исполнение. В маленьких маслонаполненных распределительных трансформаторах упругий гофрированный бак может компенсировать расширение масла. В ином случае необходимо обеспечить пространство над маслом внутри трансформаторного бака, заполненное сухим воздухом или азотом, чтобы они выполняли роль подушки при расширении или сжатии масла.

Можно использовать сочетание различных решений. Трансформаторный бак может быть полностью заполнен маслом, и при этом иметь большой расширительный бак достаточного объёма для расширения масла и необходимой газовой подушки. Эта газовая подушка может иметь продолжение в следующем дополнительном баке, возможно на уровне земли. Для ограничения объёма газовой подушки можно открыть сообщение с наружной атмосферой при заданных верхнем и нижнем пределах внутреннего давления.

Указатели уровня масла

Указатели уровня масла применяются для определения уровня масла в расширительном баке, как правило, это приборы с циферблатом, установленные прямо на расширительном баке.

Устройства сброса давления

Дуговой разряд или короткое замыкание, которые возникают в маслонаполненном трансформаторе, обычно сопровождаются возникновением сверхдавления в баке из-за газа, образующегося при разложении и испарении масла. Устройство сброса давления предназначено для снижения уровня сверхдавления вследствие внутреннего короткого замыкания и, таким образом, уменьшения риск разрыва бака и неконтролируемой утечки масла, которое может также осложниться возгоранием вследствие короткого замыкания. Малый вес тарелки клапана и низкая пружинная жёсткость закрывающих пружин обеспечивает быстрое и широкое открывание. Клапан вновь возвращается в нормальное закрытое состояние, когда сверхдавление спущено.

Устройства защиты от внезапного повышения давления

Реле внезапного повышения давления предназначено для срабатывания при возникновении упругой масляной волны в баке трансформатора при серьёзных замыканиях. Это устройство способно различать быстрое и медленное нарастание давления и автоматически отключает выключатель, если давление растёт быстрее, чем задано.

Устройства защиты от перенапряжений

Устройствами защиты силовых трансформаторов яявляются. Элементы РЗиА, на трасформаторах 6/10кВ чаще используются плавкие предохранители

Колеса/полозья для транспортировки

Крупные агрегаты на практике редко доставляются с помощью крана на своё место установки на фундаменте. Их необходимо каким-то способом перемещать от транспортного средства до основания. Если от места разгрузки с транспортного средства до места конечного монтажа агрегата проложены литые рельсы, то агрегат может быть оборудован колёсами для качения. Поворот на 90 градусов в транспортных целях обеспечивают колёса, работающие в двух направлениях. Агрегат поднимают подъёмником и поворачивают колёса. Когда агрегат установлен на месте, то застопоренные колёса могут быть на нем или сняты и заменены опорными блоками. Можно также опустить агрегат прямо на фундамент.

Если такая рельсовая система не предусмотрена, то используют обычные плоские направляющие. Агрегат толкают по смазанным направляющим прямо на место установки, или используют гусеничную цепь.

Агрегат можно приварить к фундаменту, на котором он установлен. Агрегат можно также поставить на вибрационное основание для уменьшения передачи шума через фундамент.

Детектор горючих газов

Детектор горючих газов указывает на присутствие водорода в масле. Водород отлавливается через диалитическую мембрану. Эта система дает раннюю индикацию медленного процесса газогенерации еще до того, как свободный газ начнёт барботировать в направлении газонакопительного реле.

Расходомер

Для контроля вытекания масла из насосов в трансформаторах с принудительным охлаждением устанавливаются масляные расходомеры. Работа расходомера обычно основана на измерении разницы давления по обе стороны от препятствия в потоке масла. Расходомеры также применяются для измерения расхода воды в водоохлаждаемых трансформаторах.

Обычно расходомеры оборудованы аварийной сигнализацией. Они также могут иметь циферблатный индикатор.

Условное обозначение трансформаторов

Структурная схема условного обозначения трансформатора


Буквенная часть условного обозначения должна содержать обозначения в следующем порядке:
А - автотрансформатор;
О или Т - однофазный или трехфазный трансформатор;
Р - расщепленная обмотка НН;
З - исполнение трансформатора с естественным масляным охлаждением или с охлаждением негорючим жидким диэлектриком с защитой при помощи азотной подушки без расширителя;
Л - исполнение трансформатора с литой изоляцией;
Т - трехобмоточный трансформатор (Для двухобмоточных трансформаторов не указывают);
Н - трансформатор с РПН;
С - исполнение трансформатора собственных нужд электростанций.

Потери в трансформаторах

Степень потерь (и снижения КПД) в трансформаторе зависит, главным образом, от качества, конструкции и материала «трансформаторного железа» (электротехническая сталь). Потери в стали состоят в основном из потерь на нагрев сердечника, на гистерезис и вихревые токи. Потери в трансформаторе, где «железо» монолитное значительно больше, чем в трансформаторе, где оно составлено из многих секций (так как в этом случае уменьшается количество вихревых токов). На практике монолитные сердечники не применяются. Для снижения потерь в магнитопроводе трансформатора, также, магнитопровод изготаливается из специальных сортов трансформаторной стали с добавлением кремния, который повышает удельное сопротивление железа электрическому току, а сами пластины лакируются для изоляции друг от друга. Кроме того потери в трансформаторе добавляются за счёт нагрева проводов. Это учитывается в схеме замещения реального трансформатора при помощи активного сопротивления.


Режимы работы трансформатора

1. Режим холостого хода. Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. С помощью опыта холостого хода можно определить КПД трансформатора, коэффициент трансформации, а также потери в стали.

2. Нагрузочный режим. Этот режим характеризуется замкнутой на нагрузке вторичной цепи трансформатора. Данный режим является основным рабочим для трансформатора.

3. Режим короткого замыкания. Этот режим получается в результате замыкания вторичной цепи накоротко. С его помощью можно определить потери полезной мощности на нагрев проводов в цепи трансформатора.

схемы соединения обмоток трансформатора

Y-соединение, так называемой соединение звездой, где все три обмотки соединены вместе одним концом каждой из обмоток в одной точке, называемой нейтральной точкой или звездой

D-соединение, так называемое дельта-соединение, или соединение треугольником, где три фазных обмотки соединены последовательно и образуют кольцо (или треугольник)

Среди современных устройств электротехники одним из самых распространенных является трансформатор. Этот агрегат широко используется как в бытовых приборах, так и силовой электронике. Его действие заключается в преобразовании тока. Причем изменять его величину трансформатор может как в большую, так и меньшую сторону.

Определенным устройством обладает разнообразны. Они имеют некоторые конструкционные и функциональные отличия. Чтобы понять, что собой представляет подобное оборудование, а также особенности его эксплуатации, каждый вид следует рассмотреть подробно.

Устройство

Существующие сегодня виды трансформаторов тока обладают определенными общими характеристиками. Прибор имеет в своей системе одну, две и больше обмоток. Они расположены на один сердечник. Представленные сегодня в продаже трансформаторы отличаются способом изготовления. Их надежность зависит от производителя. Рабочие характеристики таких видов оборудования также схожи.

Трансформатор не предназначен для преобразования постоянного тока. В противном случае это приведет к перегреву проводника. Трансформаторы способны работать исключительно с переменным, импульсным и пульсирующим током.

Все разновидности представленного оборудования имеют в своем составе три обязательных компонента. К ним относится магнитопровод, охлаждающая система и обмотка. Первый компонент еще называют сердечником.

Принцип работы

Рассматривая назначение и виды трансформаторов , следует сказать несколько слов об их функциональных качествах. В таком оборудовании присутствует первичная и вторичная обмотка. К первой катушке подводится первоначальное напряжение. Его требуется повысить или понизить.

Вторичные обмотки могут состоять из одной или нескольких катушек. С них передается трансформированное напряжение. В основу работы такого прибора положен закон Фарадея. Магнитный поток, который изменяется во времени через ограниченную контуром площадку, формирует электродвижущие силы. Помимо этого, ток, который изменяется во времени, может индуцировать непостоянное магнитное поле.

На схемах трансформатор изображают как две (или более) катушки. Между первой и вторичными обмотками проходит вертикальная линия. Она изображает сердечник (магнитопровод). При выполнении возложенных на него функций трансформатор обладает малыми потерями энергии. Это сделало представленное оборудование востребованным.

Рабочие режимы

Существующие виды работы трансформатора можно выделить в 3 группы. К ним относится холостой ход, короткое замыкание и рабочий режим. В первом случае выводы вторичной обмотки никуда не подключаются. В этом режиме, если сердечник изготовлен из мягкого магнитного материала, ток покажет потери.

При коротком замыкании выводы катушек вторичной обмотки соединяются между собой. При этом на первичную обмотку будет подаваться незначительное напряжение. Этот режим присутствует в измерительных разновидностях трансформаторов.

При активной нагрузке возникают напряжения на концах всех типов обмотки. Если на вторичной обмотке это значение выше, трансформатор называется повышающим. И наоборот. Степень трансформации определяется при помощи заданного коэффициента.

Классификация

Существует несколько подходов к классификации представленного оборудования. Это позволяет понять его устройство и функции. Существующие виды трансформаторов тока могут классифицироваться по назначению. В этом случае выделяются приборы напряжения, измерительные, лабораторные, защитные, промежуточные типы.

По способу установки также выделяют несколько групп. От этого зависят условия, в которых может эксплуатироваться техника. Трансформаторы могут быть внутренние и наружные, стационарные, шинные или опорные, а также переносные.

Ступеней в системе может быть одна или несколько. По признаку номинального напряжения различают высоковольтные и низковольтные приборы. Если учитывать тип изоляции, можно также выделить несколько групп трансформаторов. Этот показатель зависит от технологии производства. Бывают приборы с компаундной, сухой и масляно-бумажной изоляцией.

Согласно со сферой применения, выделяют силовые, бытовые, сварочные, масляные, автотрансформаторы и т. д.

Силовой трансформатор

Существующие виды силовых трансформаторов относятся к низкочастотным приборам. Их применяют в силовых сетях предприятий, городов, поселков и т. д. Такое оборудование понижает напряжение в сети до требуемого значения 220 В.

Силовые трансформаторы могут иметь от двух и более обмоток. Они устанавливаются на броневом сердечнике. Чаще всего подобный конструкционный элемент изготавливают из электротехнической стали. Такой трансформатор помещается в бак со специальным маслом. Если мощность оборудования высокая, в ней применяется активное охлаждение.

Для электростанций применяются силовые трехфазные трансформаторы. Их мощность составляет до 4 тыс. кВт. Такие разновидности приборов позволяют добиться уменьшения на 15 % энергопотерь по сравнению с тремя однофазными трансформаторами.

Сетевые разновидности

В 80-е года прошлого века самым распространенным был сетевой трансформатор. Виды трансформаторов этого типа дорабатывались. Сегодня их изготавливают на Ш-подобном сердечнике, а также стержневых или тороидальных магнитопроводах. На них и устанавливаются обмотки.

При помощи подобного устройства напряжение, которое поступает из бытовой сети, понижается до требуемого значения (например, 12, 24 В). Самыми компактными считаются трансформаторы с тороидальным сердечником. Его магнитопровод полностью покрывается обмотками. При этом удается избежать появления пустого ярма.

Автотрансформатор

Существующие виды обмоток трансформатора очень разнообразны. Они могут быть регулирующими, основными, вспомогательными. Наиболее оригинальное строение имеет обмотка автотрансформатора. Это низкочастотный прибор. Его вторичная обмотка является составной частью первичной. Они связаны, как и в других видах трансформаторов, магнитно. Однако подобная обмотка сообщается также и электрически.

От одной катушки отходит несколько выводов, позволяя получить напряжение разного значения. Преимуществом такой конструкции является ее низкая стоимость. Провода для монтажа обмотки потребуется меньше. Также получается сэкономить на количестве материала сердечника. Вес автотрансформатора будет меньше, чем у других типов оборудования.

Однако в этом типе приборов отсутствует гальваническая развязка. Это недостаток автотрансформаторов. Такое оборудование применяется в автоматической технике управления, а также на высоковольтных коммуникациях. Сегодня большой популярностью пользуются трехфазные автотрансформаторы. Их соединенная обмотка образует треугольник или звезду.

Трансформатор тока и напряжения

Сегодня также выделяются определенные виды трансформаторов напряжения и тока. Все зависит о того, как функционирует прибор. Если он понижает ток, это, соответственно, трансформатор тока. Для регулировки напряжения также разработана определенная категория приборов.

Первичная обмотка трансформатора тока подключается к электричеству, а вторичная - к измерительным или защитным приборам. Чаще всего применяется первый тип устройств. Катушку с первичной обмоткой подключают в цепь последовательно. В ней измеряется переменный ток.

Сердечник такого оборудования изготавливают из шихтованной электротехнической стали. Ее производят холоднокатаным способом. Первичная обмотка чаще всего представляет собой шину. При работе подобного оборудования важно учитывать коэффициент трансформации.

Для промышленности могут выпускаться подобные приборы с несколькими группами вторичных обмоток. Одну из них соединяют с измерительными приборами (например, счетчикам), а вторую - к защитному оборудованию.

Импульсный трансформатор

Рассматривая, какие виды трансформаторов применяются сегодня, нельзя не сказать несколько слов об импульсных разновидностях представленных приборов. Они практически полностью вытеснили низкочастотные тяжелые трансформаторы. Их сердечник выполняется не из шихтовой стали, а из феррита. Форма магнитопровода может быть самой разной, например, чашка, кольцо, Ш-подобный тип.

Трансформаторы импульсного типа могут функционировать на высоких частотах (500 кГц и более). Благодаря такой особенности габариты подобных изделий значительно уменьшились. Требуется использовать меньше провода для обмотки.

Импульсные трансформаторы и дроссели с ферритовым стержнем сегодня применяются всюду. Их можно встретить в энергосберегающих лампочках, зарядных устройствах, мощных инверторах и т. д. Сфера их применения очень широка.

В некоторых трансформаторах импульсного типа применяется обратная схема питания. В этом случае прибор по своей сути является дросселем сдвоенного типа. При этом процессы приема и передачи электроэнергии протекают не одновременно.

Импульсный трансформатор тока

Чтобы иметь возможность измерять направление и величину тока, для импульсных схем часто применяется особый трансформатор. Виды трансформаторов этой группы имеют ферритовый сердечник. Чаще всего он имеет единственную кольцевую обмотку. Через ее центр продевается провод. В нем и исследуется ток. Обмотку при этом нагружают на резистор.

Измерение производится по несложной схеме. Если нагрузка выполняется на резистор известного номинала, то напряжение при замере на нем будет пропорциональным показателю тока обмотки.

В продаже присутствуют трансформаторы этого типа с различными показателями коэффициента трансформации. Если нужно узнать только направленность тока, прибор нагружается только двумя стабилизаторами, встроенными в схему.

Система защиты

Трансформаторы представляют собой надежное оборудование. Однако из-за различных повреждений может произойти аварийная ситуация. Поэтому применяются различные виды защит трансформатора .

Подобные системы отключают оборудование от сети при наличии повреждений. В зависимости от типа конструкции защита может отсоединить питание только от поврежденной части прибора. При обнаружении поломки система может подавать сигнал. При этом используют различные типы защиты автотрансформаторов.

Дифференциальная защита необходима при нарушениях целостности обмоток, ошиновки и вводов оборудования. Если же повреждения обнаруживаются со стороны происходит токовое отсекание. Это защита мгновенного действия.

Газовая защита применяется при повреждениях внутри бака. При этом может выделяться газ. Также она срабатывает при понижении уровня масла.

Максимальная токовая или направленная защита позволяет уберечь оборудование от сверхтоков. Также в некоторых конструкциях может предусматриваться защита от замыкания на корпус и от перегрузки. Последняя система действует на сигнал, оповещая персонал.

Рассмотрев особенности конструкции и принцип работы, можно понять, что собой представляет трансформатор. Виды трансформаторов , существующие сегодня, отличаются по ряду признаков. Это влияет на их функциональность.

Трансформатором называется электрическое устройство, которое передает электроэнергию от одного контура на другой с помощью магнитной индукции. Трансформаторы стали наиболее применяемыми электрическими устройствами, применяющимися в быту и промышленности. Эти устройства используются для повышения или понижения напряжения, а также в схемах блоков питания для преобразования входящего переменного тока в постоянный ток на выходе.

Способность трансформаторов передавать электроэнергию применяется для передачи мощности между разными схемами несогласованных электрических цепей. Рассмотрим различные виды и типы силовых трансформаторов, их установку и технические свойства.

Устройство трансформатора

Конструкции трансформаторов имеют различное строение. В зависимости от этого ведется расчет номинального напряжения, либо между фазой и землей, либо между двумя фазами.

1 — Первичная обмотка 2 — Вторичная обмотка 3 — Сердечник магнитопровода 4 — Ярмо магнитопровода

Конструкция обычного стандартного трансформатора состоит из двух обмоток с общим ярмом, для создания электромагнитной связи между обмотками. Сердечник изготавливают из электротехнической стали. Катушка, на которую входит электрический ток, является первичной обмоткой. Катушка на выходе называется вторичной.

Существует такой вид трансформаторов, как тороидальный. У такого трансформатора катушки индуктивности являются пассивными компонентами, состоящими из магнитного сердечника в виде кольца. Сердечник имеет повышенную магнитную проницаемость, изготовлен из феррита. Вокруг кольца намотана катушка. Тороидальные фильтры и катушки применяются для трансформаторов высокой частоты. Они используются для испытаний мощности.

Переменный ток поступает на первичную обмотку трансформатора, образуется электромагнитное поле, которое развивается в магнитном потоке сердечника. По принципу электромагнитной индукции во вторичной обмотке образуется переменная ЭДС, которая образует напряжение на клеммах выхода трансформатора.

Силовые трансформаторы, имеющие две обмотки, не рассчитаны на постоянный ток. Однако, в момент подключения их к постоянному току, они образуют короткий импульс напряжения на выходе.

Вид уличного силового трансформатора

Конструкция силового трансформатора подобна обычному бытовому трансформатору.

Виды

Существует множество факторов, по которым можно классифицировать силовые трансформаторы. При общем рассмотрении этих устройств, можно сказать, что они преобразуют электрическую энергию одного размера напряжения в электроэнергию с большим или меньшим размером напряжения.

В зависимости от различных факторов силовые трансформаторы делятся на виды:

1. По выполняемой задаче . Понижающие трансформаторы. Применяются для получения низкого напряжения из высоковольтных линий питания. Повышающие, используются для увеличения значения напряжения.
2. По числу фаз . Трансформаторы 3-фазные, 1-фазные. Широко применяются в трехфазной сети питания. Оптимальным вариантом будет в трехфазной сети установить три однофазных трансформатора на каждую отдельную фазу.
3. По количеству обмоток . Двухобмоточные и трехобмоточные.
4. По месту монтажа . Наружные и внутренние.

Существует много других разных факторов, по которым можно разделять силовые трансформаторы. Например, по способу охлаждения или соединения обмоток, и т.д. При установке оборудования важную роль играют условия климата, что также разделяет трансформаторы на классы.

Трансформаторное оборудование бывает универсальным, и специального назначения мощностью до 4000 кВт напряжением 35000 вольт. Конкретную модель выбирают по возлагаемой на трансформатор задаче.

Принцип действия

Трансформатором называется электромагнитное статическое устройство, у которых имеется 2 или больше обмоток, связанных индуктивно. Они предназначены для изменения одного переменного тока в другой. Вторичный ток может различаться любыми свойствами: значением напряжения, количеством фаз, формой графика тока, частотой. Широкое использование в электроустановках, а также в распределительных системах получили силовые трансформаторы.

С помощью таких устройств преобразуют размер напряжения и тока. При этом количество фаз, форма графика тока, частота не изменяются. Элементарный силовой трансформатор имеет магнитопровод из ферромагнитного материала, две обмотки на стержнях. Первая обмотка подключена к линии питания переменного тока. Ее называют первичной. Ко второй обмотке подсоединена нагрузка потребителя. Ее назвали вторичной. Магнитопровод вместе с катушками обмоток располагается в баке, наполненном трансформаторным маслом.

Принцип работы заключается в электромагнитной индукции. При включении питания на первичную обмотку в виде переменного тока в магнитопроводе образуется переменный магнитный поток. Он замыкается на магнитопроводе и образует сцепление с двумя обмотками, в результате чего в обмотках индуцируется ЭДС. Если к вторичной обмотке подключить какую-либо нагрузку, то под действием ЭДС в цепи этой обмотки образуется ток и напряжение.

В повышающих силовых трансформаторах напряжение на вторичной обмотке всегда выше, чем напряжение в первичной обмотке. В понижающих трансформаторах напряжения первичной и вторичной обмоток распределяются в обратном порядке, то есть, на первичной напряжение выше, а на вторичной ниже. ЭДС обеих обмоток отличаются по количеству обмоток.

Поэтому, используя обмотки с необходимым соотношением количества витков, можно получить конструкцию трансформатора для получения любого напряжения. Силовые трансформаторы имеют свойство обратимости. Это значит, что трансформатор можно применить как повышающий прибор, или понижающий. Но, чаще всего, трансформатор предназначен для определенной задачи, то есть, либо он должен повышать напряжение, либо снижать.

Сфера использования

Энергетика в современное время не обходится без устройств, преобразующих электроэнергию в сетях и магистралях, а также принимающих и распределяющих ее. Когда появились такие устройства, то произошло снижение расхода использования цветных металлов, а также уменьшились потери энергии.

Для эффективной работы оборудования нужно рассчитать потери в силовом трансформаторе. Для этого необходимо обратиться к специалистам. Мощные трансформаторы нашли применение на линиях высокого напряжения и станциях распределения энергии. Без них не обходится ни одна отрасль промышленности, где необходимо преобразование энергии. Вот некоторые области применения силовых трансформаторов:

  • В сварочном оборудовании.
  • Для электротермических устройств.
  • В схемах электроизмерительных устройств и приборов.

Свойства и расчет трансформатора

Чаще всего основные свойства устройства указаны в инструкции в его комплекте. Для силовых трансформаторов такими основными свойствами являются:

Мощность трансформатора по номиналу определяется изготовителем, и выражается в кВА (киловольт-амперы). Номинальное значение напряжения указывается первичное, для соответствующей обмотки, и вторичное, на клеммах выхода. Размеры этих значений могут не совпадать на 5% в ту или иную сторону. Чтобы ее вычислить, нужно сделать простой расчет.

Номинальный ток и мощность устройства должны удовлетворять стандартам. На сегодняшний день производятся модели сухих трансформаторов, которые имеют такие данные мощности от 160 до 630 кВА. Обычно мощность трансформатора обозначена в его паспорте. По ее значению определяют номинальный размер тока. Для расчета применяют формулу:

I = S х √3U, где S и U – это мощность по номиналу, и напряжение.

Для каждой обмотки в формулу входят свои значения величин. Чтобы рассчитать мощность силового трансформатора при работе с потребляющей энергию нагрузкой, необходимо проводить довольно сложные расчеты, которые могут сделать специалисты. Такие расчеты необходимы во избежание негативных моментов, которые могут возникнуть при функционировании трансформатора.

Номинальное напряжение – это линейная величина напряжения холостого хода на обмотках. Они вычисляются, исходя из мощности трансформатора.

Установка и эксплуатация

Многие варианты исполнения силовых трансформаторов имеют большую массу. Поэтому на место монтажа их доставляют на специальных транспортных платформах. Их привозят в собранном готовом к подключению виде.

Установка устройства производится на специальном фундаменте, либо в определенном для этого помещении. При массе трансформатора до 2 тонн установка производится на фундамент. Корпус трансформатора в обязательном порядке заземляют.

Перед монтажом трансформатор подвергают лабораторным испытаниям, в ходе которых измеряется коэффициент трансформации, проверяется качество всех соединений, проверяется изоляция повышенным напряжением, производится контроль качества масла.

Перед установкой трансформатор необходимо тщательно осмотреть. Нужно обратить особое внимание на наличие утечек масла, проконтролировать состояние изоляторов, соединений контактов.

После ввода в эксплуатацию нужно периодически производить измерение температуры нагрева специальными стеклянными термометрами. Температура должна быть не более 95 градусов.

Во избежание аварий при эксплуатации силового трансформатора нужно периодически производить замеры нагрузки. Это дает информацию о перекосах фаз, искажающих напряжение питания. Осмотр силового трансформатора производится два раза в год. Периоды осмотра могут изменяться в зависимости от состояния устройства.

Слово «трансформатор» происходит от латинского transformo – преобразую.

Трансформатор предназначен для преобразования переменного тока одного напряжения в переменный ток другого напряжения.

В основе работы трансформатора лежит явление электромагнитной индукции, открытое английским физиком Майклом Фарадеем в 1831 году. Суть этого явления заключается в возникновении электродвижущей силы (ЭДС) в проводящем контуре, который находится в переменном магнитном поле или движется в постоянном магнитном поле. Электрический ток, вызванный этим полем, называется индукционным. Фарадей открыл это явление, пропуская ток от батареи через обмотки катушки. При этом наблюдалось возникновение тока в обмотках другой катушки, никак не связанной с первой.

В течение полувека, начиная с 30?х годов XIX в., когда было открыто явление электромагнитной индукции, и до середины 80?х годов XIX в., когда началось широкое применение электричества, трансформатор прошел путь от простейшей индукционной катушки до промышленного типа трансформатора однофазного тока, в начале 90?х годов XIX в. – трансформатора трехфазного тока.

В 30–70?е годы XIX в. происходило зарождение и развитие принципов трансформации, создание индукционных приборов, преобразующих импульсы постоянного тока одного напряжения в импульсы тока другого напряжения. В конце 40?х годов XIX в. большое распространение получили индукционные катушки Б. С. Якоби, Г. Д. Румкорфа и других изобретателей. Позднее эти катушки сыграли существенную роль в качестве аппаратов системы зажигания двигателей внутреннего сгорания. Подобные устройства нельзя назвать трансформаторами в современном смысле этого слова.

По мере расширения области применения электричества и роста числа потребителей электрической энергии возникла необходимость в совершенствовании методов трансформации, без которых невозможно было осуществлять распределение электрической энергии.

Изобретателем трансформатора был русский электротехник П. Н. Яблочков. В 1876 г. он применил трансформатор однофазного тока с разомкнутой магнитной системой для дробления электрической энергии в цепях электрического освещения.

Трансформатор состоит из первичной обмотки и одной или нескольких вторичных обмоток. Они намотаны на каркас изолированным проводом и размещены на сердечнике. Сердечник состоит из тонких пластин, изготовленных из специальной стали. В первом трансформаторе Яблочкова сердечник был разомкнут.

Переменный ток, текущий по первичной обмотке, создает вокруг нее и в сердечнике переменное магнитное поле, пересекающее витки вторичной обмотки. Тем самым во вторичной обмотке возбуждается переменная ЭДС. При подключении к выводам вторичной обмотки какого?либо устройства, потребляющего электрический ток, в замкнутой цепи появится электрический ток.

Если в первичной и вторичной катушках число витков одинаково, то во вторичной катушке наведется напряжение, равное тому, которое подведено к первичной. В трансформаторе, повышающем напряжение, количество витков во вторичной обмотке выше, чем в первичной. В понижающем трансформаторе, наоборот, вторичная обмотка содержит меньше витков, чем первичная. Отношение напряжения на первичной обмотке к напряжению на вторичной обмотке называется коэффициентом трансформации данного трансформатора.

В 1882 г. во время Московской промышленной выставки лаборант Московского университета И. Ф. Усагин продемонстрировал устройство, показавшее, что предложенный П. Н. Яблочковым способ распределения энергии при помощи индукционных катушек может быть вполне успешно применен для одновременного питания любого типа приемников электрического тока. Усагин воспользовался индукционными катушками с одинаковыми первичной и вторичной обмотками. Первичные обмотки семи катушек включались последовательно в цепь однофазного переменного тока, а в каждую вторичную обмотку включались разные приемники тока: электродвигатель, проволочная нагревательная спираль, дуговая лампа с регулятором, электрические свечи Яблочкова. Все эти приемники могли работать одновременно, не мешая друг другу.

Новым шагом в использовании трансформаторов с разомкнутой магнитной системой для целей распределения электроэнергии явилась «система распределения электричества для производства света и двигательной силы», запатентованная во Франции в 1882 г. Голяром и Гиббсом. Трансформаторы Голяра и Гиббса предназначались не только для дробления энергии, но и для преобразования напряжения, т. е. имели коэффициент трансформации, отличный от 1. На деревянной подставке укреплялось некоторое число вертикальных индукционных катушек, первичные обмотки которых соединялись последовательно. Вторичные обмотки каждой катушки были секционированы, и каждая секция имела пару выводов для присоединения приемников тока, которые действовали независимо.

Последовательно соединенные индукционные катушки создавали определенное индуктивное сопротивление, величина которого могла регулироваться путем перемещения сердечников катушек.

Трансформаторы Голяра и Гиббса впервые демонстрировались в апреле 1883 г. на осветительной установке в Вестминстерском аквариуме (Лондон). Первичные обмотки двух трансформаторов были соединены последовательно. Вторичная обмотка одного трансформатора питала 26 ламп накаливания (ток 40 ампер), а три вторичные обмотки другого – соответственно пять ламп накаливания, свечу Яблочкова и электродвигатель.

Схема последовательного включения обмоток трансформаторов возникла исторически в связи с применением дуговых ламп. В системах дугового освещения, как правило, регулировалась величина тока в цепи последовательно включенных потребителей. В случае применения ламп накаливания и других видов приемников тока, для которых важным является поддержание постоянной величины напряжения, более целесообразным стало их параллельное включение. Но если для последовательного соединения элементов электрической цепи весьма подходящими были трансформаторы с разомкнутой магнитной цепью, которые представляли собой умеренное индуктивное сопротивление, то при параллельном включении приемников становилось технически не оправданным применение трансформаторов с разомкнутыми сердечниками. Поэтому в 80?е годы XIX в. появились конструкции трансформаторов с замкнутой магнитной системой, обладавших значительно лучшими характеристиками (меньшая величина намагничивающего тока, а следовательно, меньшие потери и более высокий коэффициент мощности). При последовательном соединении элементов электрической цепи было нецелесообразно применять трансформаторы с замкнутой магнитной системой, обладающие очень большой индуктивностью.

В 80–90?х годах XIX в. был разработан промышленный тип трансформаторов с замкнутой магнитной системой, а также предложено параллельное включение трансформаторов в питающую сеть. Первая конструкция трансформатора с замкнутой магнитной системой была создана в Англии в 1884 г. братьями Джоном и Эдуардом Гопкинсонами. Сердечник этого трансформатора был набран из стальных полос или проволок, разделенных изоляционным материалом, что снижало потери на вихревые токи. На сердечнике помещались, чередуясь, катушки высшего и низшего напряжений.

Параллельное включение трансформаторов было впервые предложено и обосновано венгерским электротехником М. Дери, который получил патент на этот способ соединений в 1885 г. (независимо от него такое же предложение было сделано в Англии С. Ц. Ферранти и в Америке Кеннеди). Только после этого трансформаторы с замкнутыми сердечниками получили распространение.

Практическая реализация прогрессивных идей о передаче электрической энергии переменным током высокого напряжения оказалась возможной после создания промышленного типа трансформатора с замкнутой магнитной системой, имевшего достаточно хорошие эксплуатационные показатели. Такой трансформатор в нескольких модификациях (кольцевой, броневой и стержневой) был разработан в 1885 г. венгерскими электротехниками О. Блати, М. Дери и К. Циперновским. В заявке они отметили важное значение замкнутого шихтованного магнитного сердечника, в особенности для мощных силовых трансформаторов.

Важное значение для расширения практического применения трансформаторов и улучшения надежности их работы имело введение в конце 80?х годов XIX в. (Д. Свинберн) масляного охлаждения трансформаторов большой мощности. Первые такие трансформаторы помещались в керамический сосуд, заполненный керосином или маслом для уменьшения нагрева сердечников и обмоток.

Система трехфазного тока в первые годы своего существования требовала решения проблемы передачи энергии на большие расстояния. Но электропередача выгодна при высоком напряжении, для получения которого в случае переменного тока необходим трансформатор. В трехфазной системе не было принципиальных затруднений для трансформирования энергии, но были нужны три однофазных трансформатора вместо одного при однофазной системе. Чтобы избежать увеличения количества дорогих машин, нужно было найти принципиально новое решение.

В 1889 г. это удалось сделать М. О. Доливо?Добровольскому. Он изобрел трехфазный трансформатор. Вначале это был трансформатор с радиальным расположением сердечников, его конструкция еще напоминала машину с выступающими полюсами, в которой устранен воздушный зазор, а обмотки ротора перенесены на стержни. Затем было предложено несколько конструкций так называемых «призматических» трансформаторов, в которых удавалось получить более компактную форму магнитопровода. Наконец в октябре 1891 г. была сделана патентная заявка на трехфазный трансформатор с параллельными стержнями, расположенными в одной плоскости. В принципе эта конструкция сохранилась до настоящего времени.

Целям электропередачи отвечали также работы, связанные с изучением схем трехфазной цепи. В 80–90?х годах XIX в. значительное место занимала осветительная нагрузка, которая часто вносила существенную асимметрию в систему. Кроме того, иногда было необходимо иметь в своем распоряжении не одно, а два напряжения: одно – для осветительной нагрузки, а другое, повышенное – для силовой.

Для того чтобы иметь возможность регулировать напряжение в отдельных фазах и располагать двумя напряжениями в системе (фазным и линейным), Доливо?Добровольский разработал в 1890 г. четырехпроводную схему трехфазной цепи, или, иначе, систему трехфазного тока с нулевым проводом. Он же указал, что вместо нейтрального или нулевого провода можно использовать землю. Доливо?Добровольский обосновал свои предложения доказательством того, что четырехпроводная трехфазная система позволяет допускать определенную асимметрию нагрузки; при этом напряжение на зажимах каждой фазы будет оставаться неизменным. Для регулирования напряжения в отдельных фазах четырехпроводной системы Доливо?Добровольский предложил использовать изобретенный им трехфазный автотрансформатор.

В настоящее время существуют много типов трансформаторов, применяющихся в различных областях техники.

Основной вид трансформаторов – трансформаторы силовые. Среди них больше всего двухобмоточных. Они устанавливаются на линиях электропередачи. Такие трансформаторы повышают напряжение тока, вырабатываемого электростанциями с 10–15 тысяч вольт до 220–750 тысяч вольт. В местах потребления электроэнергии при помощи силовых трансформаторов высокое напряжение преобразуют в низкое (220–380 вольт). Эти трансформаторы имеют КПД 0,98–0,99.

Кроме силовых существуют трансформаторы, предназначенные для измерения больших напряжений и токов: измерительные трансформаторы, трансформаторы напряжения, трансформаторы тока, а также снижения уровня помех проводной связи, преобразования напряжения синусоидальной формы в импульсное и многие другие.

Отличное определение

Неполное определение ↓

ТРАНСФОРМАТОРЫ

НАЗНАЧЕНИЕ ТРАНСФОРМАТОРОВ И ИХ ПРИМЕНЕНИЕ

Трансформатор предназначен для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Увеличение напряжения осуществляется с помощью повышающих трансформаторов, уменьшение — понижающих.

Трансформаторы применяют в линиях электропередачи, в технике связи, в автоматике, измерительной технике и других областях.

В соответствии с назначением различают:

Силовые трансформаторы для питания электрических двигателей и осветительных сетей;

Специальные трансформаторы для питания сварочных аппаратов, электропечей и других потребителей особого назначения;

Измерительные трансформаторы для подключения измерительных приборов.

По числу фаз трансформаторы делятся на одно- и трехфазные. Трансформаторы, используемые в технике связи, подразделяют на низко- и высокочастотные.

Расчетные мощности трансформаторов различны — от долей вольт-ампер до десятков тысяч киловольт-ампер; рабочие частоты — от единиц герц до сотен килогерц.

Трансформатор — простой, надежный и экономичный электрический аппарат. Он не имеет движущихся частей и скользящих контактных соединений, его КПД достигает 99%. КПД трансформатора η, определяемый как отношение мощности на выходе Р 2 к мощности на входе Р 1 , зависит от нагрузки.

УСТРОЙСТВО ТРАНСФОРМАТОРА

Трансформатор представляет собой замкнутый магнитопровод, на котором расположены две или несколько обмоток. В маломощных высокочастотных трансформаторах, используемых в радиотехнических схемах, магнитопроводом может являться воздушная среда.

Для уменьшения потерь на гистерезис магнитопровод изготовляют из магнитомягкого материала — трансформаторной стали, имеющей узкую петлю намагничивания. Для уменьшения потерь на вихревые токи в материал магнитопровода вводят примесь кремния, повышающую его электрическое сопротивление, а сам магнитопровод собирают из отдельных листов электротехнической стали толщиной 0,35—0,5 мм, изолированных друг от друга теплостойким лаком или специальной бумагой.

Различают трансформаторы стержневого (рис. 7.1, а) и броневого (рис. 7.1, б) типов.

Рис. 7.1. Конструкция однофазного маломощного трансформатора стержневого (а) и броневого (б) типов

Последний хорошо защищает обмотки катушек от механических повреждений. Верхнюю часть магнитопровода, называемую ярмом, крепят после насадки на стержень катушек (обмоток). Стержни и ярмо соединяют очень плотно, чтобы исключить воздушные зазоры на стыках. В маломощных трансформаторах находят широкое применение кольцевые магнитопроводы, которые собирают из штампованных колец или навивают из длинной ленты. В этих магнитопроводах отсутствует воздушный зазор, поэтому магнитный поток рассеяния мал. В трансформаторах, рассчитанных на повышенные частоты, кольцевые магнитопроводы часто прессуют из ферромагнитного порошка, смешанного с изоляционным лаком.

Обмотки трансформаторов изготовляют из медного провода и располагают на одном и том же или на разных стержнях, рядом или одну под другой. В последнем случае непосредственно к стержню примыкает обмотка низшего напряжения, а поверх нее размещается обмотка высшего напряжения.

Обмотку трансформатора, к которой подводится напряжение питающей сети, называют первичной , а обмотку, к которой подсоединяется нагрузка,— вторичной . На сердечнике может быть размещено несколько вторичных обмоток с разным числом витков, что позволяет получить различные по значению вторичные напряжения.

При работе трансформатора за счет токов в обмотках, а также вследствие перемагничивания магнитопровода и вихревых токов выделяется теплота. Трансформаторы небольшой мощности (до 10 кВ-А), для которых достаточно воздушного охлаждения, называют сухими.

Рис. 7.2. Трехфазный силовой трансформатор Рис. 7.3. Общий вид автотрансформатора

I — ручка скользящего контакта; 2— скользящий контакт; 3 — обмотка

В мощных трансформаторах применяют масляное охлаждение (рис. 7.2). Магнитопровод 1 с обмотками 2, 3 размещается в баке 4, заполненном минеральным (трансформаторным) маслом. Масло не только отводит теплоту за счет конвекции или принудительной циркуляции, но и является хорошим диэлектриком (изолятором). Масляные трансформаторы надежны в работе и имеют меньшие размеры и массу по сравнению с сухими трансформаторами той же мощности. При изменении температуры объем масла меняется. При повышении температуры излишек масла поглощается расширителем 5, а при понижении температуры масло из расширителя возвращается в основной бак.

В тех случаях, когда требуется плавно изменять вторичное напряжение, применяют скользящий контакт для изменения числа витков обмотки (примерно так же, как это делается в ползунковых реостатах). Скользящий контакт широко используется в автотрансформаторах, рассчитанных на регулирование напряжения в небольших пределах (рис. 7.3).

ФОРМУЛА ТРАНСФОРМАТОРНОЙ ЭДС

Рассмотрим катушку (рис. 7.4), к зажимам которой подведено синусоидальное напряжение. Пренебрежем сопротивлением катушки и потерями на гистерезис и вихревые токи. Тогда приложенное к катушке напряжение u = U m sinωt будет уравновешиваться только ЭДС самоиндукции e = E m sin ω t .

Это очевидно, так как полностью уравновешивать друг друга могут только равные и одинаково изменяющиеся во времени величины.

В соответствии с законом электромагнитной индукции е = — w ; следовательно, Е m sin ωt= —ω.

Это дифференциальное уравнение позволяет найти зависимость между ЭДС обмотки и магнитным потоком в магнитопроводе:

d Ф= - sin ωt dt

Проинтегрируем левую и правую части этого выражения:

Ф = - ∫ sin ω t dt= cos ωt +A

Здесь постоянная интегрирования A = 0, так как синусоидальная ЭДС не может создать постоянную составляющую магнитного потока. Таким образом,

E= cos ω t = Ф m cos ω t,

где Ф m = Е m /ω w —амплитудное значение переменного магнитного потока в магнитопроводе катушки. Подставив в последнее равенство Е m = √2 E и ω = 2πf, получим

Ф m =, или Е=

т. е. Е = 4,44 fw Ф m . Это выражение, связывающее действующее значение ЭДС в обмотке с амплитудой магнитного потока в магнитопроводе, принято называть формулой трансформаторной ЭДС. Она играет важную роль в теории трансформаторов и электрических машин переменного тока.

Рис. 7.4. Схема катушки с ферромагнитным сердечником в цепи переменного тока

ПРИНЦИП ДЕЙСТВИЯ ОДНОФАЗНОГО ТРАНСФОРМАТОРА.

КОЭФФИЦИЕНТ ТРАНСФОРМАЦИИ.

Работа трансформатора основана на явлении взаимной индукции, которое является следствием закона электромагнитной индукции.

Рассмотрим более подробно сущность процесса трансформации тока и напряжения.

При подключении первичной обмотки трансформатора к сети переменного тока напряжением U 1 по обмотке начнет проходить ток I 1 (рис. 7.5), который создаст в магнитопроводе переменный магнитный поток Ф. Магнитный поток, пронизывая витки вторичной обмотки, индуцирует в ней ЭДС E 2 , которую можно использовать для питания нагрузки.

Поскольку первичная и вторичная обмотки трансформатора пронизываются одним и тем же магнитным потоком Ф, выражения индуцируемых в обмотке ЭДС можно записать в виде

Е 1 = 4,44fw 1 Ф m

Е 2 = 4,44 fw 2 Ф m

где f — частота переменного тока; w 1 , w 2 — число витков обмоток.

Е 2 /Е 1 = w 2 / w 2 = k .

Отношение чисел витков обмоток трансформатора называют коэффициентом трансформации k .

Таким образом, коэффициент трансформации показывает, как относятся действующие значения ЭДС вторичной и первичной обмоток.

На основании закона электромагнитной индукции можно написать

e 1 = — w 1 , e 2 = — w 2

Поделив одно равенство на другое, получим e 2 / e 1 = w 2 / w 1 = k

Следовательно, в любой момент времени отношение мгновенных значений ЭДС вторичной и первичной обмоток равно коэффициенту трансформации. Нетрудно понять, что это возможно только при полном совпадении по фазе ЭДС е 1 и е 2 .

Если цепь вторичной обмотки трансформатора разомкнута (режим холостого хода), то напряжение на зажимах обмотки равно ее ЭДС: U 2 = E 2 , а напряжение источника питания почти полностью уравновешивается ЭДС первичной обмотки U ≈ E 1 . Следовательно, можно написать, что k = E 2 / E 1 ≈U 2 /U 1 .

Рис. 7.5. Принципиальная схема однофазного трансформатора

Таким образом, коэффициент трансформации может быть определен на основании измерений напряжения на входе и выходе ненагруженного трансформатора. Отношение напряжений на обмотках ненагруженного трансформатора указывается в его паспорте.

Учитывая высокий КПД трансформатора, можно полагать, что S t ≈ S 2 , где S 1 = U 1 I 1 — мощность, потребляемая из сети; S 2 = U 2 I 2 — мощность, отдаваемая в нагрузку.

Таким образом, U 1 I 1 ≈ U 2 I 2 , откуда I 1 / I 2 ≈ U 2 / U 1 = k .

Отношение токов первичной и вторичной обмоток приближенно равно коэффициенту трансформации, поэтому ток I 2 во столько раз увеличивается (уменьшается), во сколько раз уменьшается (увеличивается) U 2 .

ТРЕХФАЗНЫЕ ТРАНСФОРМАТОРЫ

В линиях электропередачи используют в основном трехфазные силовые трансформаторы. Внешний вид, конструктивные особенности и компоновка основных элементов этого трансформатора представлены на рис. 7.2. Магнитопровод трехфазного трансформатора имеет три стержня, на каждом из которых размещаются две обмотки одной фазы (рис. 7.6).

Рис. 7.6. Размещение обмоток на сердечнике трехфазного трансформатора

Для подключения трансформатора к линиям электропередачи на крышке бака имеются вводы, представляющие собой фарфоровые изоляторы, внутри которых проходят медные стержни. Вводы высшего напряжения обозначают буквами А, В, С, вводы низшего напряжения — буквами а, b , с. Ввод нулевого провода располагают слева от ввода а и обозначают О (рис. 7.7).

Принцип работы и электромагнитные процессы в трехфазном трансформаторе аналогичны рассмотренным ранее. Особенностью трехфазного трансформатора является зависимость коэффициента трансформации линейных напряжений от способа соединения обмоток.

Применяются главным образом три способа соединения обмоток трехфазного трансформатора: 1) соединение первичных и вторичных обмоток звездой (рис. 7.8, а); 2) соединение первичных обмоток звездой, вторичных — треугольником (рис. 7.8, б); 3) соединение первичных обмоток треугольником, вторичных—звездой (рис. 7.8, в).


Рис. 7.8. Способы соединения обмоток трехфазного трансформатора

Обозначим отношение чисел витков обмоток одной фазы буквой k , что соответствует коэффициенту трансформации однофазного трансформатора и может быть выражено через отношение фазных напряжений: k = w 2 / w 1 ≈ U 2ф / U 1ф

Обозначим коэффициент трансформации линейных напряжений буквой с.

При соединении обмоток по схеме звезда — звезда

При соединении обмоток по схеме звезда — треугольник

с =.

При соединении обмоток по схеме треугольник— звезда

Таким образом, при одном и том же числе витков обмоток трансформатора можно в √3 раза увеличить или уменьшить его коэффициент трансформации, выбирая соответствующую схему соединения обмоток.

АВТОТРАНСФОРМАТОРЫ И ИЗМЕРИТЕЛЬНЫЕ ТРАНСФОРМАТОРЫ

Принципиальная схема автотрансформатора изображена на рис. 7.9.

У автотрансформатора часть витков первичной обмотки используется в качестве вторичной обмотки, поэтому помимо магнитной связи имеется электрическая связь между первичной и вторичной цепями. В соответствии с этим энергия из первичной цепи во вторичную передается как с помощью магнитного потока, замыкающегося по магнитопроводу, так и непосредственно по проводам. Поскольку формула трансформаторной ЭДС применима к обмоткам автотрансформатора так же, как и к обмоткам трансформатора, коэффициент трансформации автотрансформатора выражается известными отношениями

k = w 2 /w l =E 2 /E l ≈ U 2 /U 1 ≈I 1 /I 2

Вследствие электрического соединения обмоток через часть витков, принадлежащую одновременно первичной и вторичной цепям, проходят токи I 1 и I 2 , которые направлены встречно и при небольшом коэффициенте трансформации мало отличаются друг от друга по значению. Поэтому их разность оказывается небольшой и обмотку w 2 можно выполнить из тонкого провода. Таким образом, при k = 0,5 - 2 экономится значительное количество меди. При больших или меньших коэффициентах трансформации это преимущество автотрансформатора исчезает, так как та часть обмотки, по которой проходят встречные токи I 1 и I 2 , уменьшается до нескольких витков, а сама разность токов увеличивается.

Электрическое соединение первичной и вторичной цепей повышает опасность при эксплуатации аппарата, так как при пробое изоляции в понижающем автотрансформаторе оператор может оказаться под высоким напряжением первичной цепи.

Автотрансформаторы применяют для пуска мощных двигателей переменного тока, регулирования напряжения в осветительных сетях, а также в других случаях, когда необходимо регулировать напряжение в небольших пределах.

Измерительные трансформаторы напряжения и тока используют для включения измерительных приборов, аппаратуры автоматического регулирования и защиты в высоковольтные цепи. Они позволяют уменьшить размеры и массу измерительных устройств, повысить безопасность обслуживающего персонала, расширить пределы измерения приборов переменного тока.

Измерительные трансформаторы напряжения служат для включения вольтметров и обмоток напряжения измерительных приборов (рис. 7.10). Поскольку эти обмотки имеют большое сопротивление и потребляют маленькую мощность, можно считать, что трансформаторы напряжения работают в режиме холостого хода.

Измерительные трансформаторы тока используют для включения амперметров и токовых катушек измерительных приборов (рис. 7.11). Эти катушки имеют очень маленькое сопротивление, поэтому трансформаторы тока практически работают в режиме короткого замыкания.

Рис. 7.10. Схема включения и Рис. 7.11. Схема включения и

условное обозначение измери- условное обозначение изме-

тельного трансформатора напря- рительного трансформатора тока
жения

Результирующий магнитный поток в магнитопроводе трансформатора равен разности магнитных потоков, создаваемых первичной и вторичной обмотками. В нормальных условиях работы трансформатора тока он невелик. Однако при размыкании цепи вторичной обмотки в сердечнике будет существовать только магнитный поток первичной обмотки, который значительно превышает разностный магнитный поток. Потери в сердечнике резко возрастут, трансформатор перегреется и выйдет из строя. Кроме того, на концах оборванной вторичной цепи появится большая ЭДС, опасная для работы оператора. Поэтому трансформатор тока нельзя включать в линию без подсоединенного к нему измерительного прибора. Для повышения безопасности обслуживающего персонала кожух измерительного трансформатора должен быть тщательно заземлен.

СВАРОЧНЫЕ ТРАНСФОРМАТОРЫ

К источникам питания сварочных аппаратов предъявляются специфические требования: при заданной мощности они должны создавать большие токи в нагрузке, причем резкое изменение сопротивления нагрузки не должно существенно сказываться на значении сварочного тока.

Относительно невысокие напряжения при больших токах обеспечивают не только эффективное тепловыделение в сварочном контакте, но и безопасность сварщика, работающего обычно среди металлических конструкций с высокой электропроводностью.

В соответствии с рассмотренными требованиями сварочные трансформаторы обеспечивают понижение напряжения от 220 или 380 В до 60—70 В. Такое напряжение на зажимах вторичной обмотки устанавливается при холостом ходе сварочного трансформатора. В процессе сварки оно колеблется от максимального значения 60—70 В до значений, близких к нулю. Сопротивление электрической дуги, возникающей при сварке, изменяется при перемещениях руки сварщика. Если бы напряжение на зажимах вторичной обмотки трансформатора поддерживалось постоянным, возникали бы резкие колебания тока в цепи и регулировать тепловыделение было бы невозможно. Поэтому сварочный трансформатор устроен так, что при резком уменьшении сопротивления дуги ток в цепи увеличивается незначительно, а произведение I 2 R , определяющее количество теплоты, сохраняется на требуемом уровне.

В соответствии с законом Ома при резком уменьшении сопротивления и незначительном увеличении тока напряжение на дуге снижается. Сварочный трансформатор имеет крутопадающую внешнюю характеристику.

Сварочный трансформатор выдерживает короткие замыкания, возникающие в случае прикосновения электрода к сварочному шву. Ток короткого замыкания, как показывает внешняя характеристика, ограничен. Вторичная обмотка трансформатора рассчитана на достаточно длительное протекание этого тока.

При постоянном напряжении питающей сети быстрое снижение выходного напряжения трансформатора при незначительном возрастании тока может быть достигнуто только за счет увеличения внутреннего падения напряжения в обмотках трансформатора. Для этого нужно увеличить сопротивление обмоток.

Сварочные трансформаторы изготовляют с большим регулируемым индуктивным сопротивлением обмоток. При этом увеличивают не активное сопротивление проводов, а индуктивное сопротивление рассеяния обмоток, так как увеличение активного сопротивления привело бы к возрастанию потерь энергии и перегреву трансформатора.

Для увеличения индуктивного сопротивления рассеяния обмоток увеличивают поток рассеяния, вводя в магнитопровод трансформатора шунтирующий магнитопроводящий стержень, через который замыкается часть основного магнитного потока. Изменяя значение воздушного зазора в шунтирующем стержне, можно изменять магнитный поток рассеяния. Средний подвижный стержень, выполняющий функции магнитного шунта, предусмотрен, например, в конструкции отечественного сварочного трансформатора СТАН-1.

Применяют и другие способы изменения индуктивного сопротивления рассеяния обмоток. Так, в трансформаторе СТЭ в цепь вторичной обмотки включают специальный дроссель с регулируемым воздушным зазором, а в трансформаторе ТС-500 изменяют расстояние между первичной и вторичной обмотками.